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Intermittent turbulence in a pulsating pipe flow
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Numerical simulations of the pulsating flow in a pipe of circular cross-section
characterized by small imperfections are carried out to determine the conditions
leading to the appearance of turbulence. The results show that in the oscillatory case
(no steady velocity component of the basic flow), the critical value of the Reynolds
number Rδ depends on the Womersley parameter α and, in particular, Rδ increases as
α decreases. The critical value of Rδ of the plane wall case is recovered when α is larger
than about 10. For moderate values of the Reynolds numbers but larger than the
critical one, turbulence appears around flow reversal and breaks the symmetry of the
flow, originating a steady velocity component. Moreover, turbulence is not present
throughout the whole cycle and there are phases during which the flow relaminarizes.
The presence of a steady pressure gradient tends to destabilize the flow and this
destabilizing effect becomes larger as the steady velocity component is increased.
When turbulence is present, its dynamics is similar to that of the steady case and a
log-law layer can be identified both in the oscillatory and the pulsating case.

1. Introduction
Even though time-periodic flows occur in many engineering applications, the interest

in the study of transition and turbulence structure in pulsating flows arises mainly
from the pulsating character of most physiological flows, which are often generated
by peristaltic pumps.

Using visual observations and measurements of the instantaneous velocity profiles,
Nerem, Seed & Wood (1972) performed a detailed study of the flow in the thoracic
aorta of dogs and distinguished different flow regimes. Those with negligible high-
frequency velocity oscillations were assumed to represent a laminar flow. Those
characterized by high-frequency velocity oscillations present only during a small part
of the cycle, i.e. at the peak systolic phase, were thought to represent a transitional
condition. Finally, the velocity profiles with high-frequency oscillations persisting
throughout the decelerating phase of systole were thought to be representative of the
turbulent regime, even though turbulence was damped out during the diastolic phase.
Ojha et al. (1989), addressing phenomena encountered in mild stenoses of medium-
sized arteries, studied a pulsatile flow through constricted tubes and found vortical
and helical structures which were formed primarily during the decelerating phase of
the cycle and near the reattachment point downstream of the constriction. Under
some conditions, they observed transition to turbulence, accompanied by intense
fluctuations of the wall shear stress.
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Even though there is evidence that turbulence may also be present in healthy
subjects, traditionally it is assumed that a turbulent flow in the human circulatory
system is generally evidence of a disorder, such as a valvular stenosis, and may be
detected as ‘murmurs’ via a stethoscope (Leon & Shaver 1974).

Also, the respiratory flow in the small airways can be regarded as an oscillatory
flow in a pipe and the basic mechanisms associated with human speech can be
modelled as a pulsatile flow through a pipe with a constriction formed by the vocal
folds, followed by an abrupt area expansion. In acoustics, it is well known that there
is a strong interaction between turbulence and separation phenomena (Hirschberg,
Gilbert & Wijnands 1996). Turbulence tends to destroy the coherent, long-lasting
vortical structures generated by flow separation.

Hence, it is important to determine the conditions leading to the appearance of
turbulence and to understand the mechanism of turbulence production in a time-
periodic flow.

Though a complex geometry is usually associated with physiological flows
(curvature of the pipe axis, bifurcations, narrowing and widening of the cross-section,
etc.), a first step in understading transition to turbulence is the study of transition
in a straight tube of constant circular cross-section. A deep understanding of the
instability mechanism and of the flow structure in this simple geometry may lead to
a better understanding of the transport phenomena even in complex geometries.

However, less is known about transition in a pulsatile flow in a pipe of circular
cross-section. Attention has been mainly focused on flat Stokes boundary layers. Von
Kerczek & Davis (1974) and Hall (1978), using a ‘global’ instability criterion based
on Floquet theory, found that the flow was stable within the investigated range of the
Reynolds number. Von Kerczek & Davis (1974) and Blondeaux & Seminara (1979),
using a ‘momentary’ criterion for instability, found that for Reynolds numbers larger
than a critical value there are parts of the cycle near flow reversal during which the
flow is unstable. However, after a cycle, the perturbations experience a net decay.
Akhavan et al. (1991b) showed that three-dimensional disturbances can experience a
net growth when interacting with pre-existing finite-amplitude two-dimensional waves
which, according to Blondeaux & Vittori (1994), can be generated by the resonant
interaction of the oscillatory Stokes flow with wall imperfections. More recently,
Blennerhassett & Bassom (2002), by means of a linear stability analysis based on
Floquet theory, have predicted that the flat Stokes layer is unstable for Reynolds
numbers larger than 1416. Hereafter, the Reynolds number is defined as Rδ =U ∗

0 δ∗/ν∗

(U ∗
0 is the amplitude of the velocity oscillations far from the wall, δ∗ =

√
2ν∗/ω∗ is the

thickness of the viscous Stokes layer, ν∗ is the kinematic viscosity of the fluid and
ω∗ is the angular frequency of the fluid oscillations). Moreover, Blennerhassett &
Bassom (2006) have shown that the oscillatory flow in a two-dimensional channel has
essentially the same critical conditions for instability as the semi-infinite Stokes layer
flow, provided that the channel width is larger than 28δ∗.

Instability of a sinusoidally modulated pipe flow with zero mean has been
investigated experimentally by, among others, Sergeev (1966), Merkli & Thomann
(1975), Hino, Sawamoto & Takasu (1976), Eckmann & Grotberg (1991). On the basis
of the experimental measurements, four different flow regimes can be identified: (a) the
laminar regime, (b) the flow regime where ‘small-amplitude’ perturbations appear
superimposed on the Stokes flow but the average velocity profiles exhibit only small
deviations from the laminar case, (c) the flow regime where bursts of turbulence appear
only during the decelerating phases of the cycle, (d) the flow regime characterized by
the presence of turbulence throughout the whole cycle. Different names have been used
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in the literature to identify these four regimes. For the sake of clarity, we follow Blon-
deaux & Vittori (1994) and identify regime (b) as the ‘disturbed laminar’ regime, regime
(c) as the ‘intermittently turbulent’ regime and regime (d) as the ‘fully turbulent’ regime.

In more detail, Tromans (1976) found a critical value of the Reynolds number
for the onset of instability equal to 130 and a value equal to 500 above which he
observed turbulence which, however, appeared only during the decelerating phases,
while in the accelerating phases the flow recovered a laminar behaviour. Hino et al.
(1976) found that disturbances of the laminar flow first appeared when the Reynolds
number Rδ fell in the range 70–550 depending on the Womersley parameter α = R∗/δ∗

(R∗ is the pipe radius), provided α was not too small. However, Hino et al. (1976)
found that the velocity profiles exhibited only small deviations from the laminar
case. On the contrary when the Reynolds number exceeded 550, for every value of
α except for very small values, the velocity profiles were disturbed by much larger
fluctuations. More recently, Eckmann & Grotberg (1991) performed some experiments
for 6.36 <α < 23.33. They detected transition to turbulence at Rδ equal to 500 and
found turbulence only during the decelerating phases. Lodhal, Sumer & Fredsøe
(1998) defined turbulence as occurring when there was any sign of imperfection in
the wall shear stress signal and found that the critical value of the Reynolds number
depends on the parameter α. In particular, this critical value is about 500 when α is
larger than 10 but it increases when α is decreased (see figure 3 of Lodhal et al. 1998).
For example, for α = 25 and 53, the critical value of the Reynolds number is about
550, but for α = 4.2 it about 900 and for α = 3.3 it becomes 2000. Monkewitz (1983)
observed that the laminar Stokes profile showed no significant distortion up to values
of the Reynolds number of approximately 500. Moreover, he found that a vortical
disturbance appeared very clearly at a Reynolds number equal to 647 just before
flow reversal. Akhavan et al. (1991a) conducted experiments for Reynolds numbers
in the range 550–2000 and for Womersley parameters in the range 5–10. In all the
investigated flows, turbulence appeared toward the end of the accelerating phases of
the cycle and was sustained throughout the decelerating phases. During the turbulent
portion of the cycle, production of turbulence was restricted to the wall region and
was the result of turbulent bursts. Moreover, the three-layer description of the flow
consisting of a viscous sublayer, a logarithmic layer (with von Kármán constant equal
to 0.4) and an outer wake was identified.

From this brief summary of the experimental results, it appears that transition
from the laminar to the disturbed laminar regime (regime (b)) is quite sensitive
to the particular experimental set-up (some authors observed a direct transition
from the laminar regime to the intermittently turbulent one) and the critical value
of the Reynolds number depends on the Womersley parameter α (Hino et al. 1976).
Transition to the ‘intermittently turbulent’ regime is usually well defined and mainly
independent of the particular experimental set-up; however, the critical value of
the Reynolds number for transition from regime (b) to regime (c) is found to be
independent of α by Hino et al. (1976) while the results of Lodhal et al. (1998)
suggest that it depends on α.

Instability of a periodic pipe flow with a non-zero mean flow has been investigated
by, among others, Gilbrech & Combs (1963), Sarpkaya (1966), Yellin (1966). The
phenomenon has been experimentally studied by Stettler & Hussain (1986) who
determined the transition limits in the three-dimensional parameter space defined
by the mean and modulation Reynolds numbers and by a frequency parameter. In
particular, Stettler & Hussain (1986) focused their attention on the structure of the
observed turbulent patches, which differed in structural detail from the turbulent
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puffs or slugs normally seen in steady flows. A more recent investigation has been
carried out by Lodhal et al. (1998). The results of figure 6 of their paper show that a
steady pipe flow is stabilized by the superposition of weak velocity oscillations for any
value of the Womersley parameter. However, strong velocity oscillations are able to
trigger turbulence even when the steady flow should be in the laminar regime and this
destabilizing effect becomes larger when the parameter α is increased. Moreover, the
measurements by Lodhal et al. (1998) in the oscillatory-dominated case (large values
of the velocity oscillations and a small steady current) show that turbulence is mainly
confined to the decelerating phases of the cycle and the flow tends to relaminarize
during the accelerating phases. Some works have been devoted to the study of the
effects of the flow modulation on turbulence structure at moderate Reynolds numbers
(e.g. Shemer, Wygnanski & Kit 1985; Ramaprian & Tu 1980). Even though interesting
results have been obtained, further investigations are still required to have a complete
picture of the phenomenon.

Here, the transitional pulsating flow in a pipe is investigated by means of numerical
simulations. The main goal of the present study is the determination of the critical
conditions and the identification of the mechanism that leads to turbulence.

The rest of the paper is organized as follows. In the next section we formulate the
problem and briefly describe the numerical approach used to integrate the Navier–
Stokes and continuity equations. In § 3, we describe the results, focusing our attention
on the values of the parameters which give rise to a turbulent flow. The final section
is devoted to the conclusions and to a description of future research.

2. Formulation of the problem and numerical approach
The pulsatile flow of a viscous incompressible homogeneous fluid in a pipe of

circular cross-section is considered. The kinematic viscosity and the density of the
fluid are denoted by ν∗ and ρ∗, respectively. A cylindrical coordinate system (x∗, r∗, θ)
is introduced, such that the x∗-axis coincides with the pipe axis and the surface r∗ = R∗

describes the average position of the pipe wall. A star denotes a dimensional quantity,
while the same symbol without the star denotes its dimensionless counterpart. The
flow is driven by a pressure gradient, along the pipe axis, such that(

∂p∗

∂x∗ ,
∂p∗

∂r∗ ,
1

r∗
∂p∗

∂θ

)
=

[
G∗

s +

(
G∗

o

2
eiω∗t∗

+ c.c.

)
, 0, 0

]
(2.1)

where p∗ denotes the pressure, t∗ is the time, ω∗ is the angular frequency of the
pressure oscillations and G∗

s , G∗
o are given constants.

As in Blondeaux & Vittori (1994), Verzicco & Vittori (1996), Vittori & Verzicco
(1998) and Costamagna, Vittori & Blondeaux (2003), the pipe walls are not perfectly
flat but small imperfections are introduced such that the wall profile is given by the
superimposition of different sinusoidal components,

r∗ = R∗ + ε∗
N∑

n=1

an cos(α∗
nx

∗ + γnθ + ϕn) = R∗ + ε∗η(x∗, θ), (2.2)

where ε∗an denotes the amplitude of the nth component which is characterized by
wavenumbers α∗

n and γn in the x∗- and θ-directions respectively and by a phase ϕn. If
no wall imperfection is introduced, transition can be triggered only by inserting quite
large perturbations (Spalart & Baldwin 1987; Akhavan et al. 1991b) and turbulence
appears for Reynolds numbers larger than those observed during the laboratory
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experiments. On the other hand, a small wall waviness is able to produce a large
response, which is related to a receptivity mechanism which is present both in
steady and unsteady flow (see Luo & Wu 2004; Wu & Luo 2006; Luchini & Bottaro
2001). Moreover, the numerical simulations show that small wall imperfections induce
significant perturbations of the laminar flow in a range of the Reynolds number for
which the disturbed laminar flow is experimentally observed. Turbulence is triggered
when the Reynolds number is larger than a critical value, which agrees well with
experimental observations (Verzicco & Vittori 1996; Vittori & Verzicco 1998). Note
that, having in mind physiological flows and fixing ν∗ = 10−6 m2 s−1, ω∗ = 6.28 Hz, the
values of ε∗ used in the numerical simulations are such that the amplitude of the wall
imperfections is of order 10−3 mm.

In the laminar regime the velocity field is unidirectional and the solution of the prob-
lem posed by the Navier–Stokes and continuity equations can be easily determined:

(u∗, v∗, w∗) =

[
U ∗

s f (r∗) +

(
U ∗

o

2
g(r∗)eiω∗t∗

+ c.c.

)
, 0, 0

]
+ O(ε), (2.3)

where (u∗, v∗, w∗) denote the three velocity components along the (x∗, r∗, θ)-axes
respectively, U ∗

s is the maximum velocity induced by the steady component of the
pressure gradient,

U ∗
s = −G∗

sR
∗2

4μ∗ , (2.4)

U ∗
o is a complex quantity describing the amplitude and phase of the velocity

oscillations induced by the oscillating pressure gradient,

U ∗
o = − iG∗

o

ρ∗ω∗

[
1

J0 [(−1 + i)R∗/δ∗]
− 1

]
, (2.5)

and f (r∗) and g(r∗) are functions of the radial coordinate which describe the velocity
profiles,

f (r∗) = 1 − r∗2

R∗2
, (2.6)

g(r∗) =
J0 [(−1 + i)r∗/δ∗] − J0 [(−1 + i)R∗/δ∗]

1 − J0 [(−1 + i)R∗/δ∗]
. (2.7)

In (2.5), (2.7) J0 denotes the Bessel function of the first kind of zero order. In
particular, the form of the solution depends on the ratio between G∗

s and G∗
o and on

the dimensionless parameter

α =
R∗

δ∗ (2.8)

which is the Womersley number, also called frequency parameter (Sarpkaya 1966) or
Stokes number (Goldschmied 1970). When G∗

o vanishes, steady Poiseuille flow is found.
On the other hand, when G∗

s vanishes an oscillatory flow with a vanishing time average
is forced. While the velocity profile of the steady velocity component turns out to be
parabolic, the velocity profile of the oscillatory velocity component depends on the
dimensionless parameter α. In figure 1 the velocity profile u∗/U ∗

0 is shown at different
phases of the cycle for α = 4, 8, 32 and G∗

s /G∗
o = 0. If α is much larger than one, a

plug flow is generated and viscous effects are confined close to wall in a boundary
layer, the thickness of which is much smaller than the radius of the pipe. Moreover,
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Figure 1. Velocity profiles u∗/U ∗
o at different phases of the cycle for α = 4 (solid lines),

α = 8 (dotted lines), α = 32 (short-dashed lines).

the velocity oscillations are out of phase with the oscillations of the pressure gradient.
In this case U ∗

o tends to −(iG∗
o)/(ω

∗ρ∗) and g(r∗), far from the wall, tends to 1.
Beside the parameters α and G∗

s /G∗
o (or alternatively U ∗

s /U ∗
o ), the flow is controlled

by a typical Reynolds number which can be defined by either using the steady velocity
component or the oscillating one. Hereafter, we choose the second one and we define
the Reynolds number Rδ as

Rδ =
Û ∗

o δ∗

ν∗ (2.9)

where Û ∗
o = |U ∗

o | is the amplitude of the velocity oscillations along the pipe axis. The

Reynolds numbers Re= Û ∗
o R∗/ν∗ and RE = Û ∗2

o /ν∗ω∗, used by other investigators,
are simply αRδ and R2

δ /2, respectively. As described in the introduction, the laminar
flow described by (2.3)–(2.7) is found when the Reynolds number Rδ is smaller than
a first critical value. For larger values of Rδ but smaller than a second critical value,
disturbances start to appear but the mean flow deviates from the solution (2.3) only
slightly. Only when Rδ is larger than the second critical value, is turbulence triggered.
When flow disturbances start to appear and the flow departs from laminar behaviour,
the growth of perturbations and the process which leads the flow to the turbulent
regime can be studied by performing numerical simulations of the Navier–Stokes
and continuity equations. The problem is written in dimensionless form using δ∗ as
length scale, (ω∗)−1 as time scale, Û ∗

o as velocity scale and ρ∗Û ∗2
o as scale for the

pressure. This choice has been made since we focus our attention on cases always
characterized by significant values of the velocity oscillations. The continuity and
momentum equations become

∂u

∂x
+

1

r

∂(rv)

∂r
+

1

r

∂w

∂θ
= 0, (2.10)

∂u

∂t
+

Rδ

2

[
u

∂u

∂x
+ v

∂u

∂r
+

w

r

∂u

∂θ

]
= −Rδ

2

[
∂p

∂x
+ Gs +

(
Go

2
eit + c.c.

)]

+
1

2

[
∂2u

∂x2
+

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

]
, (2.11)
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∂v

∂t
+

Rδ

2

[
u

∂v

∂x
+ v

∂v

∂r
+

w

r

∂v

∂θ
− w2

r

]
= −Rδ

2

∂p

∂r
+

1

2

[
∂2v

∂x2
+

1

r

∂

∂r

(
r
∂v

∂r

)

+
1

r2

∂2v

∂θ2
− v

r2
− 2

r2

∂w

∂θ

]
, (2.12)

∂w

∂t
+

Rδ

2

[
u

∂w

∂x
+ v

∂w

∂r
+

w

r

∂w

∂θ
+

vw

r

]
= −Rδ

2

1

r

∂p

∂θ
+

1

2

[
∂2w

∂x2
+

1

r

∂

∂r

(
r
∂w

∂r

)

+
1

r2

∂2w

∂2θ
+

2

r2

∂v

∂θ
− w

r2

]
, (2.13)

where (u, v, w) are the axial, radial and azimuthal velocity components, respectively.
The problem is closed by the no-slip boundary condition

(u, v, w) = 0 at r =α + εη(x, θ). (2.14)

The solution of the problem is determined numerically with a finite difference
approach using the laminar velocity field (2.3) as initial condition. Standard centred
second-order finite difference approximations of the spatial derivatives are used. The
time-advancement of the Navier–Stokes equation employs a fractional-step method
extensively described by Kim & Moin (1985), Orlandi (2000) and Rai & Moin (1991).
The non-solenoidal intermediate velocity field is evaluated by means of a third-order
Runge–Kutta scheme to discretize convective terms together with a Crank–Nicholson
scheme for the diffusive terms. The implicit treatment of the viscous terms would
require the inversion of large sparse matrices, which are reduced to tridiagonal
matrices by a factorization procedure with an error of order (t)3 (Beam & Warming
1976). Then, by enforcing the continuity equation, a Poisson equation for the pressure
field is obtained which is readily solved by taking advantage of the imposed periodicity
in the x- and θ-directions. More details on the numerical approach can be found in
Tuzi (2006).

The equations are solved in a computational domain of size Lx in the streamwise
direction. Since turbulence is assumed to be homogeneous along the pipe, periodic
boundary conditions are enforced along the x-direction, assuming that Lx is large
enough. Having assumed the amplitude of the wall waviness to be much smaller than
the thickness of the laminar boundary layer (ε = ε∗/δ∗ � 1), the boundary condition
(2.14) can be approximated as

(u, v, w) = −εη(x, θ)
∂(u, v, w)

∂r
+ O(ε2) at r = α. (2.15)

Note that (2.15) is an approximation of the boundary condition (2.14) within the
accuracy of the numerical method employed to solve (2.10)–(2.13). The numerical
scheme is second-order accurate in space and in all the simulations ε has been taken
to be smaller than the size of the first computational cell close to the wall. In the
computer code, the variables (qx, qr, qθ ) = (u, rv, rw) are introduced in such a way that
at r = 0 only the boundary condition qr = 0 needs to be forced (Orlandi 2000).

The use of periodic boundary conditions in the homogeneous direction is justified
if the computational box is large enough to include the largest eddies in the flow.
The results of Blondeaux & Seminara (1979), Akhavan et al. (1991b), Wu (1992),
Blondeaux & Vittori (1994), Vittori & Verzicco (1998), and Costamagna et al. (2003),
who investigated the plane wall case, suggest that the vortex structures, which tend to
appear when transition to turbulence takes place, are characterized by a length in the
streamwise direction equal to about 12.56δ∗. Even though differences are expected to
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be induced by the cylindrical geometry of the pipe and by the presence of a steady
velocity component, this value provides at least the order of magnitude of the length
of the most unstable perturbations. Since, as in Jimenez & Moin (1991), the goal here
is to isolate the basic flow unit and to study its morphology and dynamics, we tried to
keep the size of the computational box as small as possible to reproduce the process
of turbulence generation. Hence, on the basis of preliminary numerical experiments,
the numerical simulations have been made with a box size equal to L∗

x =50.24δ∗. For
such a box size, turbulence is generated and maintained for Reynolds numbers which
are in fair agreement with the experimental values. Moreover the average quantities,
such as velocity, turbulence energy, and Reynolds stresses, agree fairly well with
experimental measurements. An estimate of the box size in terms of wall units can
be obtained using the maximum value of the shear velocity predicted on the basis of
the laminar solution. Experimental data show that the maximum value of the wall
shear stress in the intermittently turbulent regime is not much different from those
characterizing the laminar solution. In the range of the Reynolds number investigated
here, it turns out that the length of the computational box falls between about 2000
and 5000 wall units. Such values are similar to those used by Jimenez & Moin (1991)
to study vortex structures in the wall layer in a steady flow. Finally, the ratio between
the box size and the radius of the pipe section depends on the Womersley parameter
and ranges from about 5 for α = 10 to about 25 for α = 2.

Nx , Nr , Nθ denote the number of grid points in the streamwise, radial and azimuthal
directions respectively. The mesh is uniform in the streamwise and azimuthal
directions while in the radial one a non-uniform mesh has been used to cluster
the grid- points in the vicinity of the wall where velocity gradients are expected to be
stronger during the phases of the cycle characterized by turbulence. Different values
of Nx , Nr , Nθ have been used depending on the parameters of the simulation. For the
smallest value of α (α = 3), Nx = 97, Nr = 37 and Nθ = 97, while for the largest value
(α = 8), Nx = 97, Nr = 97 and Nθ = 257. Some of the simulations have been repeated
with larger values to ascertain that the results do not depend on Nx , Nr and Nθ . An
example of the instantaneous streamwise and azimuthal velocity spectra, averaged in
the azimuthal and streamwise directions respectively, is shown in figure 2 at the phase
of the cycle when turbulence appears and the smallest vortices are generated. For the
generic velocity component u, the amplitudes of the harmonic components um, un, in
the x- and θ-directions respectively, are defined by

u(x, r, θ, t) =

M∑
m=−M

um(r, θ, t)eikmx =

N∑
n=−N

un(x, r, t)eiknθ , (2.16)

where km = 2πm/Lx and kn = n. The plots of figure 2 are for Rδ = 6000, α =4,
U ∗

s /Û ∗
o = 0 and show an acceptable drop-off at high frequencies, confirming that

the smallest scales are adequately resolved. Similar results have been obtained for
different values of the parameters. However, the results obtained show that the box is
somewhat short to adequately represent all turbulence characteristics: after averaging
|un| in the x-direction, the computed spectra display some small random oscillations
which are due to the limited size of the box compared with the largest vortex structures.
A similar problem was faced by Jimenez & Moin (1991), who circumvented it by
performing the time average of spatially averaged quantities. In the present work,
a phase-average value could be introduced. However, in the investigated range of
the Reynolds number, turbulence appears at different instants within the cycle and
a phase-average procedure would have implied averaging flow fields with different
characteristics. Hence, in the following, no phase-average procedure is used.
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Figure 2. (a) Streamwise spectra |um| averaged in the azimuthal direction; (b) azimuthal
spectra |un| averaged in the streamwise direction at r = 3.4 and t =1.124π for α = 4 and
Rδ = 6000 (—+—, streamwise velocity component; – – × – – radial velocity component; · · · ∗ · · ·,
azimuthal velocity component).
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Figure 3. Two-point spatial autocorrelation functions in the streamwise direction at r = 3.4
and t =1.124π for α = 4 and Rδ = 6000 (—+—, Ruu; – – × – –, Rvv; · · · ∗ · · ·, Rww).

To check that the limited size of the computational box does not significantly affect
the dynamics of the observed vortex structures, the instantaneous two-point spatial
autocorrelation function Ruu for the velocity field has been computed. Ruu is defined
by

Ruu =
u(x, r, θ, t)u(x + x, r, θ, t)

u(x, r, θ, t)u(x, r, θ, t)
, (2.17)

where u is the generic velocity component and an overbar denotes the average along
the x- and θ-directions. Figure 3 shows the autocorrelation functions evaluated at
r = 3.4 and at the phase of the cycle when turbulence starts to appear; similar results
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are obtained when different distances from the wall or different phases of the cycle are
considered, if turbulence is present. The instantaneous autocorrelation functions are
almost zero at half the computational domain and, hence, the numerical predictions
can be used to investigate the turbulence structure and to isolate the basic process
generating turbulence. Moreover, some of the runs have been repeated with larger
values of L∗

x . In particular for Rδ = 6000, α = 4, U ∗
s /Û ∗

o = 0, results have been obtained
with L∗

x =100.48δ∗ such that the length of the computational box is roughly 7000
wall units. For the large computational box, the number of grid points has been
doubled in the streamwise direction and 193 × 49 × 129 grid points have been used in
the streamwise, radial and azimuthal directions respectively; no significant difference
with respect to the results obtained with the smaller computational box has been
found.

3. Numerical results
First, the code described above has been used to identify the conditions which

trigger the transition from the laminar to the turbulent regime, when the flow in the
pipe is purely oscillatory, i.e. when G∗

s /G∗
o is set equal to zero. Attention is focused on

values of the parameters which are relevant for the investigation of the flow behaviour
in the human circulatory and respiratory systems. As described in Pedley (1980), the
Womersley parameter α ranges from values around 10 in the ascending aorta through
values of a few units for the carotid artery down to much smaller values (O(10−3)) for
arterioles and capillaries. Also the Reynolds number Rδ decreases on moving from
large arteries to small capillaries from values of a few thousand down to values of
order one. Similar values characterize the respiratory system (see Bedoya et al. 2003).

As already pointed out, wall imperfections as specified by (2.2) are introduced to
trigger transition to turbulence. For the plane wall case, Vittori & Verzicco (1998) used
two harmonic components of small amplitude (N =2 in (2.2)): the first component
was periodic in the streamwise direction with a wavelength equal to 12.57δ∗ and the
second one was periodic in the azimuthal direction with a wavelength equal to 6.28δ∗.
The wavelength of the first component was chosen on the basis of the linear stability
analysis of Blondeaux & Seminara (1979) who showed that, in the plane wall case,
the most unstable mode is two-dimensional and has a wavelength equal to 12.57δ∗.
The second component was chosen with the same spanwise spatial periodicity as
that of the three-dimensional perturbations which Akhavan et al. (1991b) showed to
have the maximum growth rate when interacting with a pre-existing finite-amplitude
two-dimensional wave. In the present case, we follow Vittori & Verzicco (1998) and
start the numerical simulations by fixing N equal to 2, a1 = 1, α1 = 0.5, γ1 = 0, φ1 = 0,
a2 = 0.1, α2 = 0, γ2 = nα , φ2 = 0, nα being the integer closest to α. As discussed in the
following, further runs, with double or half the wavelengths of the wall waviness or
with random wall imperfections, show that the process which leads to turbulence
is not significantly affected by the wavelength of the wall waviness. Finally, ε is
set equal to 0.005. However, numerical simulations have also been carried out for
different values of ε to show how the critical values of the Reynolds number are
affected by the amplitude of the wall imperfections.

A first set of runs is made for α = R∗/δ∗ = 4 and six different values of the Reynolds
number. For the smallest values of Rδ (namely 3000, 4000), the perturbations of the
basic flow described by (2.3)–(2.7) remain of order ε, i.e. the order of magnitude of
the amplitude of the wall waviness, and the flow regime can be assumed laminar. For
the largest values of Rδ (namely 5000, 6000, 7000, 8000), the perturbations induced by



Intermittent turbulence in a pulsating pipe flow 61

1

2

3

4

5

(×10–5)

6

0 1 2 3 4

(a) (b)

K

t/π t/π

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Figure 4. Time development of the kinetic energy K of the flow perturbations for α = 4 and
(a) Rδ = 4000, (b) Rδ = 8000.

the wall imperfections grow at particular phases of the cycle and attain large values
giving rise to turbulence, even though turbulence is not present throughout the whole
cycle and for Rδ =5000 a large number of cycles is necessary to observe turbulence
appearance. Hence, the main characteristics of the intermittently turbulent regime, as
defined by Vittori & Verzicco (1998), can be recognized. The kinetic energy K of the
velocity perturbations of the basic laminar flow, per unit length of the pipe, is plotted
versus time in figures 4(a) and 4(b) for Rδ =4000 and Rδ = 8000, respectively. K is
defined by

K =
π

Lx

∫ Lx

0

[∫ α

0

(u′2 + v′2 + w′2)rdr

]
dx, (3.1)

where (u′, v′, w′) are the perturbations of the velocity field with respect to the laminar
value. For Rδ = 4000, after an initial short transient, the kinetic energy K(t) turns out
to be periodic with period π. Moreover, K is of order ε2 and the flow perturbations
have the spatial structure of the wall waviness (2.2) as shown in figure 5 and figure 6,
where the radial and azimuthal velocity components, respectively, are plotted in the
cross-section x = 9.43 and in the plane θ = 1.14π. In figures 5 and 6 the coordinates
y and z are introduced such that (x, y, z) is a Cartesian coordinate system.

To show the accuracy of the results and their independence from the numerical grid,
in figure 7 the time development of K is shown for the same values of the parameters
as in figure 4 but doubling the number of grid points both in the streamwise and
azimuthal directions (broken line) and halving the Courant–Friedrich–Levy number
(CFL) used in the simulation to fix the value of the time step tmax (dot-dashed line).

In the following, to give an idea of the major features of the three-dimensional
flow field generated by the growth of the flow perturbations induced by the wall
waviness, plots of the streamwise component ωx of the vorticity are shown, since this
vorticity component vanishes for axisymmetric flows and significant values of ωx can
be associated with turbulence appearing. When Rδ is equal to 8000 and turbulence
appears, K is characterized by much larger values which are no longer related to ε.
The perturbations induced by the wall imperfections grow because of the flow
instability and after a short transient the flow attains a ‘regime’ state. Two different
time behaviours of the flow in a half-cycle can be observed. In one case (see figure 4b
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Figure 5. Radial velocity component for α = 4 and Rδ = 4000 at t =1.7π and (a) x = 9.43,
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Figure 6. Azimuthal velocity component for α = 4 and Rδ =4000 at t =1.7π and (a) x = 9.43,
(b) θ = 1.14π (contour interval = 4 10−8; broken lines= negative values; solid lines=positive
values).

for 2π < t < 3π, 4π < t < 5π, 6π < t < 7π, . . .), there is a fast growth of K just before
flow reversal. Figure 8, which is an enlargement of figure 4(b) for 4π < t < 6π, shows
this typical behaviour of K(t). Figure 9, where the streamwise vorticity component is
plotted in the cross-section x = 35 and in the plane θ =0.5π at t = 4.19π, shows that
initially the growth of K is induced by the growth, which takes place close to the wall,
of a mode characterized by a wavelength in the azimuthal direction equal to 2π/3
and in the streamwise direction equal to about 12.56δ∗. Then, a different mode, which
is characterized by azimuthal and streamwise wavelengths equal to 2π and 25.12δ∗

respectively, grows quickly giving rise to a coherent structure of the flow different
from that displayed in figure 9 (see figures 10 and 11 where the streamwise vorticity
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component is plotted for x =15 and θ = 0.94π at t = 4.94π and for x = 19.37 and
θ =1.14π at t = 4.598π respectively). Later, this coherent flow structure breaks down
generating small-scale eddies and, hence, turbulence (see figure 12a which shows the
streamwise vorticity component for x = 34 at t =4.965π). Because of the generation
of small-scale incoherent vortices, large dissipative effects are present which induce a
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Figure 9. Streamwise vorticity component for α = 4 and Rδ = 8000 at t = 4.19π and (a) x = 35,
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Figure 10. Streamwise vorticity component for α = 4 and Rδ = 8000 at t =4.94π and
(a) x = 15, (b) θ = 0.94π (contour interval = 1.5 × 10−2; broken lines=negative values;
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rapid decay of turbulence. However, turbulence survives to the dissipative phase of the
cycle (figure 12b) and then it grows again (figure 13) during the following half-cycle
and pervades a significant part of the cycle (figure 4b for 3π < t < 4π, 5π < t < 6π,
7π < t < 8π, . . . and figure 8 for 5π < t < 6π). Hence, the basic flow is strongly modified
by the Reynolds stresses and the growth of the coherent mode previously observed
before flow reversal is not induced. Then, the dissipative phase of the cycle occurs
again and the flow relaminarizes. Even though the length of the numerical simulation
does not allow any definitive conclusions to be drawn, it appears that the flow attains
a ‘regime’ state such that there is an alternation of these two behaviours. Therefore,
the symmetry of the flow is broken by the turbulence and a steady drift is generated
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Figure 11. Streamwise vorticity component for α = 4 and Rδ = 8000 at t = 4.958π and
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Figure 12. Streamwise vorticity component for α = 4 and Rδ =8000: (a) t = 4.965π and
x =34, contour interval = 3; (b) t = 4.98π and x =23, contour interval = 0.3 (broken
lines= negative values; solid lines= positive values).

within the pipe. This phenomenon can be explained on physical grounds by noting
that the rapid growth of the mode characterized by a streamwise wavenumber equal
to 0.25 and by an azimuthal wavenumber equal to 1, and the subsequent appearance
of turbulence, enhances the wall shear stress and leads to a decrease of the peak
velocity. During the following half-cycle, because of this decrease of the peak velocity,
resonance does not take place and the wall shear stress assumes smaller values, giving
rise to large velocities. This phenomenon is clearly shown in figure 14, where the
axial velocity is plotted versus time. The instability of the flow with respect to a
perturbation different from that forced by wall imperfections can also be observed
for different values of the parameters. For example, figure 15 shows the streamwise



66 R. Tuzi and P. Blondeaux

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(a)

z

y
0

1

2

3

4

10 20 30 40 50

(b)

r

x

Figure 13. Streamwise vorticity component for α = 4 and Rδ = 8000 at t =5.25π and
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Figure 14. Time development of the averaged axial velocity for α = 4 and Rδ = 8000 at r = 0.

vorticity component plotted in a section of the pipe for α = 4 and Rδ = 6000, at two
different phases of the cycle. At t = 0.75π, only the perturbation forced by the wall
waviness can be observed but later on, at t = 1.81π, a mode characterized by km = 0.5
and kn = 1 appears and rapidly grows.

At this stage, it is appropriate to investigate the sensitivity of the results to the
characteristics of the wall imperfections. Let us identify as case (i) the wall waviness
used to obtain the numerical results described so far. Two further simulations have
been made with α = 4 and Rδ = 8000 but halving the wavenumbers α1, γ1, α2, γ2

(simulation (ii)), and doubling the wavenumbers α1, γ1, α2, γ2 (simulation (iii)).
In figure 16, the time development of K is plotted for the three different wall

imperfections (i, ii, iii) described above, and in figures 17 and 18, the streamwise
vorticity component is plotted in a pipe section at the beginning of the rapid growth
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Figure 15. Streamwise vorticity component for α = 4 and Rδ = 6000 and (a) x = 2.7, t = 0.75π
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Figure 16. Time develpoment of the kinetic energy K of the flow perturbations for α =4,
Rδ = 8000 and the three wall wavinesses defined as (i), (ii), (iii) in the text.

of K and just after its rapid decay. The results obtained show that the characteristics
of the wall imperfections have no significant influence on the transition process and
on turbulence structure if the Reynolds number is well above its critical value. At
the beginning of the simulations the flow perturbations have the spatial structure
forced by the wall waviness but then, in all cases, the mode characterized by a
streamwise wavenumber equal to 0.25 and by an azimuthal wavenumber equal to 1
grows (figure 17) and eventually turbulence appears (figure 18).

A further simulation has been made for α = 4, Rδ = 8000 and introducing N =25
harmonic components in (2.2) characterized by random values of an, ϕn but such that
the final amplitude of the wall waviness is equal to that of the previous numerical
experiments; αn ranges from 8π/Lx to 16π/Lx and γn ranges from 8π to 16π. Figure 19
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Figure 17. Streamwise vorticity component for the three wall wavinesses (i), (ii), (iii). α = 4,
Rδ = 8000 and x = 14.6: (a) waviness (i), t = 4.94π, contour interval = 1.5 × 10−2, (b) waviness
(ii), t =0.87π, = 10−3, (c) waviness (iii), t = 0.87π, = 10−3; broken lines=negative values;
solid lines= positive values.

shows the wall geometry η as a function of x and θ . The time development of K

for the random wall imperfection is shown in figure 20 and the streamwise vorticity
component in a section of the pipe just before the rapid growth of K and at the end
of its decay is shown in figure 21. The results obtained show that even a random pipe
wall waviness does not induce any qualitative difference in the transition process.
Hence, it can be concluded that wall imperfections are necessary to trigger turbulence
but the geometry of the wall waviness has no influence on the turbulence structure.

On the other hand, the results of Vittori & Verzicco (1998) show that the transition
process in a flat Stokes boundary layer is affected by the amplitude of the wall
imperfections. Hence, it is worth investigating how the value of ε affects the present

results. In figure 22, K , the time-averaged value of K (K =
∫ 2π

0
Kdt/(2π)) is plotted

versus Rδ for α = 4, choosing the wall waviness (i) and three different values of ε

(0.0025, 0.005, 0.008). The laminar as well as the intermittently turbulent regimes,
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Figure 18. Streamwise vorticity component for the three wall wavinesses (i), (ii), (iii). α = 4
and Rδ =8000 and x = 20.5 (contour interval = 0.4): (a) waviness (i), t = 5.25π, (b) waviness
(ii), t = 1.12π, (c) waviness (iii), t =1.12π; broken lines= negative values; solid lines= positive
values.

defined in the introduction and named regimes (a) and (c) can be identified. In the
laminar regime, which can be observed for Rδ smaller than 4000, K is practically
independent of Rδ and is proportional to ε2. In the intermittently turbulent regime
(Rδ larger than 5000), K is weakly dependent on Rδ and is almost independent of ε.
In order to observe the disturbed regime, which takes place for Rδ falling in the range
4000–5000 and is characterized by values of K which depend on both Rδ and ε,
it would be necessary to make further long runs, which are too expensive from the
computational point of view.

By comparing the results obtained so far with those obtained by Vittori & Verzicco
(1998), it appears that the oscillatory flow in a pipe of relatively small radius is much
more stable than the oscillatory flow over a flat wall, where the presence of turbulence
is detected when Rδ is larger than a value close to 550. Further simulations show that
the stabilizing effect decreases on increasing the radius of the pipe, i.e. on increasing
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Figure 19. The geometry of the pipe wall when a random imperfection is present (contour
interval = 1.5 × 10−4).
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Figure 20. Time development of K for α = 4 and Rδ = 8000 when a random wall
imperfection is present.

the value of α (see, for example, figure 23). When α is equal to 4, the values of K

are of order ε2 and an analysis of the velocity field shows that the flow regime is
laminar; when α is equal to 6, turbulence starts to appear intermittently. However, it
is reasonable to expect that curvature effects become negligible and the results of the
flat wall case are recovered for values of α larger than a threshold value. In figure 24
the laminar and turbulent cases are shown in the Rδ −α plane and the results indicate
that this threshold value of α is around 10. In the same figure, the critical values of
the Reynolds number measured by Hino et al. (1976), Tromans (1976) and Lodhal
et al. (1998) are also shown. The experimental values of the critical Reynolds number
are smaller than the numerical ones because, as previously pointed out, the transition
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Figure 21. Streamwise vorticity component for the geometry of the pipe wall when a random
imperfection is present for α = 4 and Rδ = 8000: (a) x =45 t = 2.923π (contour interval
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Figure 22. Time-averaged kinetic energy K of the flow perturbations versus the Reynolds
number Rδ for α =4 and different values of ε.

process is largely influenced by the level of the perturbations, which is very small in
the numerical simulations.

Both experimental and numerical investigations provide a lot of information on
turbulence structure in steady pipe flows at high Reynolds numbers. However, much
less is known about unsteady flows. Hence, it is of interest to investigate turbulence
dynamics in the present case. Figure 25(a) shows the production P , the dissipation D

and the redistribution R, appearing in the equation for the turbulent kinetic energy,
plotted versus the coordinate y+ = (R∗ − r∗)u∗

τ /ν
∗ at a particular phase (t =5.25π) of

the cycle, when turbulence is present, for α = 4 and Rδ = 8000. In figure 25, the profiles
of the various contributions to the turbulence budget are normalized using the viscous
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Figure 23. Time development of the kinetic energy K of the flow perturbations for
Rδ = 4000 and (a) α = 4, (b) α = 6.
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Figure 24. Laminar (open circles), disturbed laminar (half-filled circles) and intermittently
turbulent (filled circles) cases in the plane α–Rδ according to the numerical simulations.
Experimental transition limits between laminar and turbulent cases: filled squares Hino et al.
(1976); filled triangles Tromans (1976); filled diamonds Lodhal et al. (1998).

scales ν∗/u∗
τ , u∗

τ , ν∗/u∗2
τ for the length, the velocity and the time, respectively (u∗

τ is the
instantaneous shear velocity). By comparing the results plotted in figure 25(a) with
those available for steady pipe flows (see, for example, Pope 2000, p. 285), it appears
that the turbulence dynamics is similar and the different contributions to the turbulent
budget have the same order of magnitude. The production term increases from zero
at the wall and it reaches its peak value well within the buffer layer. Around this peak,
production exceeds dissipation and the excess energy produced is transported away.
An analysis of the different contributions to the redistribution term shows that the
pressure transport is small while turbulent convection transports energy both toward
the wall and into the expected log-law region. Viscous transport moves kinetic energy
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Figure 26. Mean velocity profiles, using wall units, at different phases of the cycle, for
α = 4 and Rδ = 8000 (solid line= logarithmic law; broken line= linear velocity in the viscous
sublayer).

all the way to the wall. The peak dissipation occurs at the wall, where the kinetic
energy of turbulence vanishes. Although the fluctuating velocity practically vanishes
at r =α, the fluctuating strain rate and dissipation do not. The dissipation at the
wall is balanced by the redistribution term and in particular by viscous transport, the
other terms being zero.

Moving away from the wall the redistribution term tends to zero more rapidly than
P and D, which balance each other (see figure 25b). Therefore, an equilibrium layer
can be identified. On the basis of this finding, it can be argued that a logarithmic
velocity profile is present and, by plotting the value of u averaged along the θ- and
x-directions as function of r in the semi-logarithmic plane (ln y+, u+) at different
phases of the cycle but all characterized by turbulence presence, it can be seen that a
log-law behaviour can be identified for y+ > 50 (see figure 26). Moreover, an estimate
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Figure 27. Mean velocity profiles, using wall units, at t =4.315π for α = 4 and Rδ = 8000.
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Figure 28. Time development of the wall shear stress τ for α = 4 and Rδ = 8000.

of the slope of the straight line interpolating the numerical results leads to a value
of the von Kármán constant equal to 0.4 ± 10 %, in agreement with that found in
the literature for steady flows, and to a slightly time-dependent value of the constant
which provides u+ for ln y+ = 0 but always close to 5.5 (5.5±15 %). A rough estimate
of ∂K/∂t based on the results of figure 25 suggests that, at t = 5.25π, K is growing
and an enlargement of figure 8 around t = 5.25π shows that ∂K/∂t is instantaneously
positive. Even though unsteady effects play a minor role in the turbulence dynamics
during those parts of the cycle characterized by turbulence presence, they are quite
important during the other parts and the velocity profile does not display a log-law
in the phases of the cycle characterized by large negative values of the axial velocity
(see figure 27).

The time development of the wall shear stress τ is plotted in figure 28. The rapid
growth of the coherent vortex structures shown in figures 10 and 11 leads to changes
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Figure 29. Mean velocity profiles for α = 4 and Rδ = 8000 at different phases of the cycle
around t = 8.95π.

of the mean velocity profile and to sharp negative peaks of the wall shear stress. The
mean velocity profiles just before t =8.95π, when a negative peak of the wall shear
stress can be observed, show that the mean flow is decelerating and in particular at
t = 8.949π the velocity close to the wall is already negative inducing a positive wall
shear stress, even though far from the wall the velocity is still positive (figure 29).
At this stage the appearance of the three-dimensional coherent vortex structures,
shown for example in figures 10 and 11, induces a strong mixing and a momentum
transfer, with fluid characterized by positive axial velocity moving close to the wall.
This causes the sudden change of the wall shear stress, which assumes large negative
values. However, because of the pressure gradient, the mean flow keeps decelerating
and later on the fluid velocity becomes negative in the whole pipe section, inducing a
positive wall shear stress. Moreover, figure 28 shows that, when turbulence appears,
the wall shear stress is greatly enhanced by turbulent eddies, whereas the laminar
value is recovered when turbulence is damped. The small differences in τ with respect
to the theoretical laminar value, during the phases of the cycle characterized by the
absence of turbulence, are due to the delaying effects that turbulence has on the
mean flow rate. Similar results are obtained for other values of α and Rδ for which
turbulence is triggered.

An investigation of the effects of the steady component of the pressure gradient on
the stability of the flow has been carried by performing some simulations for α = 4.
An analysis of the results shows that the steady velocity component has a destabilizing
effect. For Rδ =4000 and Us/Uo = 0, the oscillatory flow in the pipe turns out to be
stable. When Us/Uo is increased, for small values of Us/Uo the flow remains laminar
but as soon as Us/Uo becomes larger than a value between 0.5 and 1, the laminar
flow is destabilized and turbulence appears close to flow reversal. Examples of the
results are shown in figure 30, where K is plotted versus t for α = 4, Rδ = 4000 and
Us/Uo = 0.25, 0.5, 1.0, 2.0. As already pointed out, for Us/Uo = 0.25 and 0.5, K is of
order ε2 but periodic with period 2π because of the presence of the steady component
of the pressure gradient. At the beginning of the simulations, the difference between
K(t) and K(t + π) is small but then it increases because of the rapid growth of the
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turbulent (filled circles) cases for α = 4.

perturbations, which takes place close to flow reversal. A further increase of Us/Uo

leads to turbulence which appears earlier as Us/Uo is increased (compare Us/Uo = 1
and Us/Uo = 2).

Of course, larger values of Us/Uo are required to force transition if smaller values
of Rδ are considered. Figure 31(a) shows the laminar and the turbulent simulated
cases in the Us/Uo–Rδ plane, while figure 31(b) shows the same results in the plane
U ∗

s R∗/ν∗-RE which was used by Lodhal et al. (1998). Comparing the results of
figure 31(b) with the experimental data by Lodhal et al. (1998), it appears that the
numerical results qualitatively agree with the laboratory data which show that the
presence of a steady velocity component causes a decrease of the critical value of
the Reynolds number. Moreover, this decrease becomes larger as Us/Uo is increased.
However, quantitative differences are present which might be induced by the different
level of flow perturbations present in the experimental apparatus and those introduced
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in the numerical simulations by the wall imperfections. Indeed, as already discussed,
the value of ε significantly affects the transition process.

As in the oscillating case, the dynamics of turbulence in the pulsating case is the
same as observed in a steady pipe flow. Figure 32 shows the mean velocity profiles in
the semi-logarithmic plane (ln y+, u+) at different phases of the cycle for Rδ = 5000,
α = 4 and Us/Uo = 1, when turbulence is present. In particular, as in the steady case,
a log-law behaviour of u+ can be identified for y+ larger than 50, an indicator that
far from the wall, production and dissipation of turbulence balance each other and
the redistribution term is negligible. Moreover, it appears that the value of the von
Kármán constant in the pulsating case is equal to that found in the oscillating case
and the log-law crosses the ordinate at 5.5.

4. Conclusions
The present numerical simulations allow identification of the critical conditions, i.e.

the conditions which lead to turbulence, for the pulsating flow in a pipe of circular
cross-section with small imperfections. When Us/Uo vanishes, i.e. in the oscillatory
case, the critical value of the Reynolds number Rδ depends on the Womersley
parameter α. For values of α larger than about 10, the critical conditions are similar
to those found in the flat wall case by Vittori & Verzicco (1998) and Costamagna
et al. (2003), but the critical value of the Reynolds number increases as α is decreased.
As in the flat wall case, the amplitude ε of the wall imperfections does not affect
turbulence characteristics in the intermittently turbulent regime, though it might affect
flow characteristics in the disturbed laminar regime but this has not been investigated
because of computational costs.

As already pointed out in the discussion of the results, close to the marginal
conditions the appearance of the turbulence breaks the symmetry of the flow and
gives rise to a steady velocity component within the pipe even in the oscillatory case.
As shown in figure 4(b), turbulence is triggered only where the axial velocity attains
its maximum negative values. Of course, this result depends on the initial conditions



78 R. Tuzi and P. Blondeaux

and different conditions may lead to turbulence when the axial velocity attains its
maximum positive values.

The presence of a steady velocity component has a destabilizing effect and induces
a decrease of the critical Reynolds number. In any case, the critical values of the
Reynolds number seem to be larger than those observed in physiological flows. In the
pulsating case, turbulence tends to appear when flow deceleration is stronger, i.e. after
the maximum value of the axial velocity is attained. Even though further numerical
runs are necessary to fully understand turbulence structures in unsteady flows, the
present results indicate that the turbulence dynamics is similar to that observed in
steady pipe flows.

The authors are grateful to Professor Paolo Orlandi who provided a first version
of the numerical code. R. T. would also like to thank Professor Orlandi for fruitful
discussions on the results and for some advice in the further development of the
numerical code. Thanks are also due to one of the referees for useful suggestions.
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